Math-601D-201: Lectures 23-24. Hörmander's solution of the $\bar{\partial}$-equation

Charles Favre
charles.favre@polytechnique.edu

April 2nd, 2020

Main theorem

Theorem

Let $\Omega \subset \mathbb{C}^{n}$ be any pseudo-convex domain. For any smooth $(p, q+1)$-forms f on Ω satisfying $\bar{\partial} f=0$, there exists a smooth (p, q)-form u such that $\bar{\partial} u=f$.

1. Solve $\bar{\partial} u=f$ in a suitable L^{2}-space using functional analysis techniques
2. Prove the solution is smooth when f is smooth (regularity of the $\bar{\partial}$-equation)

The set-up

$\varphi \in \mathcal{C}^{0}(\Omega)$. Consider the Hilbert space:
$L_{p, q}^{2}(\varphi)=\left\{\sum u_{I J} d z_{I} \wedge d \bar{z}_{J},|u|_{\varphi}^{2}:=\int \sum_{l, J}\left|u_{I J}\right|^{2} e^{-\varphi}<\infty\right\}$
$\mathcal{D}_{p, q}(\Omega)$ (smooth compactly supported (p, q)-forms) are dense in $L_{p, q}^{2}(\varphi)$

$$
L_{p, q}^{2}\left(\varphi_{1}\right) \underset{T}{\vec{b}} L_{p, q}^{2}\left(\varphi_{2}\right) \xrightarrow[s]{\bar{s}} L_{p, q}^{2}\left(\varphi_{3}\right)
$$

T and S are densely defined closed (unbounded) operators

A priori estimates

$T: H_{1} \rightarrow H_{2}$ closed and densely defined.

Theorem

F a closed subspace of H_{2} containing $\operatorname{Ran}(T)$. The following are equivalent:

- $\operatorname{Ran}(T)=F$;
- there exists $C>0$ such that

$$
\|f\|_{H_{2}} \leq C\left\|T^{*} f\right\|_{H_{1}} \text { for all } f \in F \cap \operatorname{Dom}\left(T^{*}\right)
$$

Observation: $\operatorname{ker}(T)^{\perp}=\overline{\operatorname{Ran}\left(T^{*}\right)}=\operatorname{Ran}\left(T^{*}\right)$

Set-up (II)

We want to prove for all $f \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)$

$$
|f|_{\varphi_{2}}^{2} \leq C\left(\left|T^{*} f\right|_{\varphi_{1}}^{2}+|S f|_{\varphi_{3}}^{2}\right)
$$

Theorem

The space $\mathcal{D}_{p, q}(\Omega)$ is dense in $\operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)$ for the graph norm

$$
f \mapsto|f|_{\varphi_{2}}+\left|T^{*} f\right|_{\varphi_{1}}+|S f|_{\varphi_{3}}
$$

for appropriate $\varphi_{1}, \varphi_{2}, \varphi_{3}$.

Constraints on $\varphi_{1}, \varphi_{2}, \varphi_{3}$

- Choose $\eta_{j} \in \mathcal{D}(\Omega), 0 \leq \eta_{j} \leq 1$ such that for any compact set $K, \eta_{j} \mid K \equiv 1$ for all $j \gg 0$.
- Choose $\psi \in \mathcal{C}^{\infty}(\Omega)$ such that

$$
\sum_{k=1}^{n}\left|\frac{\partial \eta_{j}}{\partial \bar{z}_{k}}\right|^{2} \leq e^{\psi} \text { for } j=1,2, \cdots
$$

- Set $\varphi_{1}=\varphi-2 \psi, \varphi_{2}=\varphi-\psi, \varphi_{3}=\varphi$

Freedom to choose any φ !!!

Some computations

If $f=\sum_{l, J} f_{l J} d z_{I} \wedge d \bar{z}_{J}$

$$
\begin{gathered}
|\bar{\partial} f|^{2}=\sum_{I, J} \sum_{j}\left|\frac{\partial f_{I J}}{\partial \bar{z}_{j}}\right|^{2}-\sum_{I K} \sum_{j l} \frac{\partial f_{l, j K}}{\partial \bar{z}_{l}} \times \frac{\overline{\partial f_{l, I K}}}{\partial \bar{z}_{j}} \\
(-1)^{p-1} e^{\psi} T^{*} f=\sum_{I K} \sum_{j} \delta_{k}\left(f_{l, j K}\right) d z_{I} \wedge d \bar{z}_{K}+ \\
\sum_{\mathbb{K}} \sum_{j} f_{l, j K} \frac{\partial \psi}{\partial z_{j}} d z_{I} \wedge d \bar{z}_{K}
\end{gathered}
$$

with $\delta_{j} h=e^{\varphi} \frac{\partial\left(h e^{-\varphi}\right)}{\partial z_{j}}=\frac{\partial h}{\partial z_{j}}-h \frac{\partial \varphi}{\partial z_{j}}$

The key estimate

If $f=\sum_{l, J} f_{I J} d z_{I} \wedge d \bar{z}_{J}$

$$
\begin{gathered}
\sum_{I K} \int \sum_{j k} f_{l, j K} \bar{f}_{l, k K} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} e^{-\varphi}+\sum_{I J} \sum_{j=1}^{n} \int\left|\frac{\partial f_{l J}}{\partial \bar{z}_{j}}\right|^{2} e^{-\varphi} \\
\leq 2\left|T^{*} f\right|_{\varphi_{1}}+|S f|_{\varphi_{3}}^{2}+2 \int|f|^{2}|\partial \psi|^{2} e^{-\varphi}
\end{gathered}
$$

Solution to the $\bar{\partial}$-equation in L^{2}

Theorem

$\Omega \subset \mathbb{C}^{n}$ pseudo-convex
For any $f \in L_{p, q+1}^{2}(\Omega, l o c), \bar{\partial} f=0$, there exists
$u \in L_{p, q}^{2}(\Omega, l o c)$ such that $\bar{\partial} u=f$.

Sobolev space: $W^{s}=\left\{f \in L^{2}, \partial^{\prime} f \in L^{2}, \forall|I| \leq s\right\}$

Theorem

Ω pseudoconvex
Let $f \in W_{p, q+1}^{s}(\Omega$, loc $)$ such that $\bar{\partial} f=0$. If

- $\bar{\partial} u=f$, and
- $u \in \operatorname{Ran}\left(T^{*}\right)$
then $u \in W_{p, q+1}^{s+1}(\Omega, l o c)$.
\longrightarrow conclude using Sobolev embedding $W_{\text {Ioc }}^{S+2 n} \subset \mathcal{C}^{s}$.

